Inter (Part-II) 2019

Physics	Group-II	PAPER: II	
Time: 20 Minutes	(OBJECTIVE TYPE)	Marks: 17	

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1-The electrostatic force between two charges is 42 N. If we place a dielectric of $\varepsilon_r = 2.1$ between the charges, then the force becomes equal to:

(a) 42 N

- (b) 84 N
- (c) 20 N 1/
- (d) 2 N

It is required to suspend a proton of charge 'q' and mass 'm' in an electric field, the strength of the field must be:

(a)
$$E = \frac{mq}{qv}$$
 (b) $E = \frac{mq}{q}$

(c)
$$E = \frac{q}{mq}$$

(d)
$$E = \frac{qv}{B}$$

The value of charge on 1.0×10^7 electrons is:

- (c) 1.6×10^{-19} C (d) $1.6 \times 10^{+19}$ C

The unit of E is NC-1 and that of B is NA-1m-1, then the unit of $\frac{E}{R}$ is:

(a) ms-2

- (b) ms
- (c) m-1s-1
- (d) ms⁻¹ 1/

5-	The value of $\frac{e}{m}$ is smallest for:							
	(a) Proton √ (b) Electron							
	(c) β-particle (d) Positron							
6-	Henry is equal to = :							
	(a) VsA ⁻¹ √ (b) Vs ⁻¹ A							
	(c) $V^{-1}s^{-1}A$ (d) $V^{-1}s^{-1}A^{-1}$							
7-	Maximum emf generated in a generator is:							
	(a) $\varepsilon_0 = \varepsilon \sin \theta$ (b) $\varepsilon = \varepsilon_0 \sin \theta$							
	(c) $\varepsilon_0 = N\omega AB \sin \theta$ (d) $\varepsilon_0 = N\omega AB $							
8-	The velocity of an oscillating charge as it moves to and fro along the wire is:							
	(a) Infinite (b) Constant							
	(c) Changing √ (d) Zero							
9-	At what frequency will an inductor of 1.0 H have							
	a reactance of 500 Ω:							
	(a) 50 Hz (b) 80 Hz 1							
	(c) 500 Hz (d) 1000 Hz							
10-	Good conductors have conductivities of the							
	order of:							
	(a) $10^{-7} (\Omega \text{m})^{-1}$ (b) $10^7 (\Omega \text{m})^{-1} \sqrt{10^7 (\Omega \text{m})^{-1}}$							
-	(c) $10^2 (\Omega \text{m})^{-1}$ (d) $10^{-2} (\Omega \text{m})^{-1}$							
11-	Which factor does not affect the conductivity of							
	p-n-junction diode: (a) Doping (b) Temperature							
49/								
40	(c) Voltage (d) Pressure 7. The Boolean expression of NAND gate is:							
12-								
	[18] [27] [18] [18] [18] [18] [18] [18] [18] [18							
	(c) $X = A.B $ (d) $X = A + B$							

13-	The	numerical	value	of	Stefen	's	constant	is:

(a) $5.67 \times 10^{-8} \sqrt{}$ (b) 2.9×10^{-3}

(c) 6.63×10^{-34} (d) 1.6×10^{-19}

The lifetime of an electron in an excited state is 14about 10⁻⁸ s. What is its uncertainty in energy during this time:

(a) $6.63 \times 10^{-34} \text{ J}$

(b) 9.1×10^{-31} J

(c) $1.05 \times 10^{-26} \text{ J} \sqrt{\text{(d)}} 7.2 \times 10^{-15} \text{ J}$

The numerical value of Rydberg's constant is: 15-

(a) $1.0974 \times 10^7 \sqrt{}$ (b) 1.0974×10^{-7}

(c) 1.0974×10^{14} (d) 1.0974×10^{-14}

By mass spectrograph, we can find the value of 16mass by using formula:

(a) $m = \left(\frac{e^2r^2}{2v}\right)B^2$ (b) $m = \left(\frac{er^2}{2v}\right)B^2 \sqrt{\frac{e^2r^2}{2v}}$

(c) $m = \left(\frac{ev}{2r^2}\right)B$ (d) $m = \left(\frac{ev^2}{2r}\right)B$

The binding energy per nucleon is maximum 17for:

(a) Hydrogen

(b) Nitrogen

(c) Uranium

(d) Iron 1/