
PARTE

Descrição do movimento: Cinemática escalar

Nesta parte analisamos os movimentos, suas leis e propriedades gerais. Discutimos dois movimentos particulares: o movimento uniforme e o movimento uniformemente variado.

Introdução ao estudo dos movimentos

Neste capítulo iniciamos o estudo geral dos movimentos, ou seja, a Cinemática. Veremos que os conceitos de repouso, movimento e a forma da trajetória dependem do referencial adotado. Na foto, os rastros de fumaça indicam as trajetórias das aeronaves em relação à Terra. A posição de um ponto material é determinada na própria trajetória em relação a um referencial. Discutimos, ainda, a noção de velocidade escalar média e a de velocidade

- INTRODUÇÃO
- POSIÇÃO NUMA TRAJETÓRIA
- 3. REFERENCIAL
- 4. VELOCIDADE ESCALAR MÉDIA E VELOCIDADE ESCALAR INSTANTÂNEA

1. Introdução

A Cinemática é a parte da Mecânica que descreve os movimentos, procurando determinar a posição, a velocidade e a aceleração de um corpo em cada instante.

escalar instantânea.

Em todas as questões e fenômenos discutidos neste livro, os corpos em estudo, denominados **móveis**, são considerados **pontos materiais**. Ponto material é um corpo cujas dimensões não interferem no estudo de determinado fenômeno.

Quando as dimensões de um corpo são relevantes no estudo de determinado fenômeno, ele é chamado **corpo extenso**. Um carro que realiza uma manobra para estacionar numa vaga é um corpo extenso. Já o mesmo carro, em uma viagem ao longo de uma estrada, pode ser tratado como um ponto material.

3.7

• 14

2. Posição numa trajetória

A primeira etapa em Cinemática é a determinação, em cada instante, da **posição** de um móvel. A posição de um móvel pode ser associada à noção de marco quilométrico numa moderna rodovia.

Ao longo de uma rodovia existem marcos quilométricos, cuja função é localizar, por exemplo, veículos que nela trafegam. Assim, a posição do ônibus da figura 1* é determinada pelo marco km 90, o que não significa que esse ônibus tenha andado necessariamente 90 km.

Se o ônibus tiver partido de uma localidade no km 60 (figura 2) e se deslocado até o km 90, terá andado nesse intervalo de tempo 30 km, diferente portanto de 90 km. Desse modo, o marco quilométrico numa rodovia apenas localiza o móvel e não indica quanto o móvel andou.

O automóvel na figura 2, que cruza com o ônibus e desloca-se em sentido contrário, também está no marco km 90. Assim, o marco quilométrico não indica o sentido do movimento.

^{*} Nos esquemas e figuras, os móveis freqüentemente não são representados em suas reais dimensões.

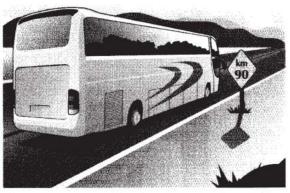


Figura 1. O marco quilométrico km 90 localiza o ônibus nessa estrada e fornece sua posição.

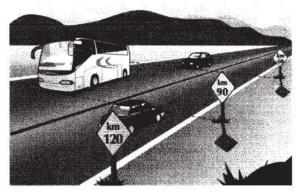
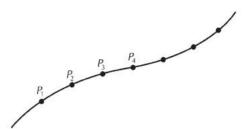



Figura 2. Representação esquemática de posições numa rodovia.

Para generalizar essas noções, vamos chamar de **trajetória** o conjunto das posições sucessivas ocupadas por um móvel no decorrer do tempo (figura 3).

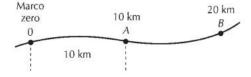


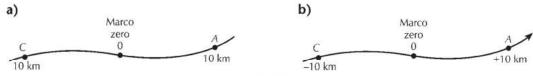
Figura 3. O móvel ocupa as posições P_1 , P_2 , P_3 , P_4 , ... nos instantes sucessivos t_1 , t_2 , t_3 , t_4 , ... A linha que contém P_1 , P_2 , P_3 , P_4 , ... é a trajetória.

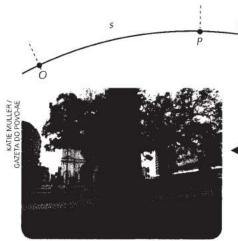
As pegadas na areia da praia nos dão idéia da trajetória que a tartaruga descreve.

Na trajetória escolhemos arbitrariamente um **marco zero**, a partir do qual medimos comprimentos que indicam a posição do móvel (figura 4) mas não fornecem nem o sentido nem a distância percorrida.

Figura 4. O móvel *A* encontra-se a 10 km do marco zero e o móvel *B*, a 20 km.

Devemos observar que um móvel pode encontrar-se de um lado ou de outro em relação ao marco zero (figura 5a), sendo portanto conveniente orientar a trajetória, adotando-se um sentido positivo (figura 5b).




Figura 5.

Assim, a posição do móvel A fica definida pela medida algébrica +10 km, e a de C, por −10 km. A medida algébrica do arco da trajetória que vai do marco zero à posição do móvel recebe o nome de espaço, indicado pela letra s. O marco zero (0) é chamado de origem dos espaços.

Na figura 5b o espaço do móvel A, independentemente do sentido do seu movimento, é $s_A = +10$ km, e o de C, $s_C = -10$ km.

.....

O espaço s permite conhecer a posição de um móvel ao longo da trajetória, em cada instante t (figura 6).

Figura 6. A cada instante *t* corresponde um espaço *s* do móvel *P*.

O marco zero (origem dos espaços) das estradas que cortam o estado do Paraná está localizado em Curitiba, a capital paranaense, na Praça Tiradentes, um de seus principais logradouros.

3. Referencial

Um corpo está em movimento quando sua posição muda no decurso do tempo. Considere um trem que parte suavemente de uma estação e se dirige a outra localidade (figura 7). Em relação a um observador fixo na estação, a lâmpada presa ao teto do trem está em movimento, porque sua posição varia com o tempo. Porém, para um observador no interior do trem, a lâmpada está em repouso.

Desse modo, a noção de movimento e de repouso de um móvel é sempre relativa a outro corpo. Essa noção é imprecisa se não definimos o corpo em relação ao qual se considera o estado de movimento ou de repouso de um móvel.

O corpo em relação ao qual identificamos se um móvel está em movimento ou em repouso é chamado referencial ou sistema de referência.

O ônibus da figura 8 se aproxima de um local onde uma pessoa o aguarda. O passageiro sentado dentro do ônibus está em movimento em relação a um referencial fixo no solo e em repouso em relação a um referencial fixo no ônibus.

Essas considerações permitem-nos estabelecer a noção de movimento e repouso de um ponto material.

Um ponto material está em movimento em relação a um determinado referencial quando sua posição, nesse referencial, varia no decurso do tempo.

Um ponto material está em **repouso** em relação a um determinado **referencial** quando sua **posição**, nesse referencial, **não varia no decurso do tempo**.

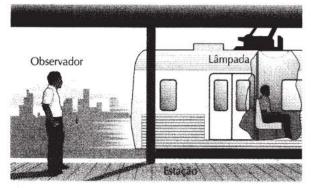


Figura 7. Os conceitos de repouso e de movimento dependem do referencial adotado.

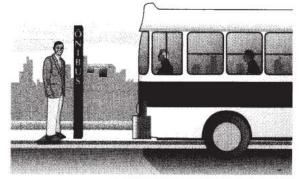
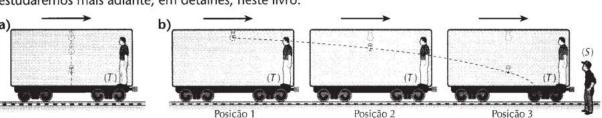
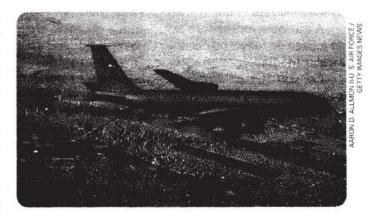



Figura 8. O passageiro sentado dentro do ônibus está em movimento em relação à pessoa situada no ponto e em repouso em relação ao motorista.

A forma da trajetória descrita por um corpo também depende do referencial adotado. Como exemplo, considere um trem em movimento em relação ao solo, conforme a figura 9. A trajetória de uma lâmpada que se desprende do teto do trem é um segmento de reta vertical em relação a um referencial fixo no trem (T). Assim, um passageiro, por exemplo, veria a lâmpada cair verticalmente. Em relação a um referencial (S) no solo, porém, a lâmpada descreve uma curva — um arco de parábola, conforme estudaremos mais adiante, em detalhes, neste livro.

Figura 9. a) Em relação ao observador (*T*) a lâmpada descreve uma trajetória retilínea vertical. b) Em relação ao observador (*S*) a lâmpada descreve uma trajetória parabólica.


▲ Trajetórias, em relação ao solo, do centro e de um ponto da borda de um disco que rola sem derrapar. O centro descreve uma trajetória retilínea e o ponto da borda, uma trajetória curvilínea denominada ciclóide. A foto foi obtida fixando-se uma pequena lâmpada no centro e outra num ponto da borda.

Leia mais

A localização de uma pessoa ou de um veículo na Terra, por meio das coordenadas latitude e longitude, pode ser feita pelo Sistema de Posicionamento Global, cuja sigla é GPS. Na página 28, leia como esse sistema funciona.

Exercícios propostos

- P.11 Você está viajando, sentado na poltrona de um ônibus, pela Rodovia dos Bandeirantes, que liga São Paulo a Campinas. Cite um referencial em relação ao qual você está em repouso e outro referencial em relação ao qual você está em movimento.
- P.12 Na foto ao lado você observa um avião reabastecendo outro em pleno vôo. Pode-se afirmar que os aviões estão em repouso?
- P.13 Um aluno, ao ler este livro, está em sua sala de aula, sentado em uma cadeira. O aluno está em repouso ou em movimento? Explique.

P.14 Considere três objetos A, B e C. Analise a afirmativa abaixo e indique se está certa ou errada: "Se A está em movimento em relação a B e B está em movimento em relação a C, então A está em movimento em relação a C".

- P.15 Um helicóptero sobe verticalmente em relação ao solo, com velocidade constante. Esboce a traje
 - solo, com velocidade constante. Esboce a trajetória descrita pelo ponto *P* da periferia da hélice, em relação:
 - a) ao piloto do helicóptero;
 - b) a um observador parado no solo.

- P.16 Um avião voa horizontalmente e com velocidade constante. No instante indicado na figura ao lado, o piloto aciona um dispositivo e deixa cair uma caixa com alimentos destinada a náufragos que se encontram numa ilha de difícil acesso. Despreze a resistência do ar. Qual é a trajetória descrita pela caixa em relação:
 - a) ao avião?
 - b) à Terra?

4. Velocidade escalar média e velocidade escalar instantânea

Considere um ônibus em movimento em relação ao solo, percorrendo 180 km em 3 h. A distância percorrida (180 km) dividida pelo intervalo de tempo (3 h) caracteriza a **velocidade escalar média** $v_{\rm m}$ do ônibus:

$$v_{\rm m} = \frac{180 \, \rm km}{3 \, \rm h} = 60 \, \rm km/h$$

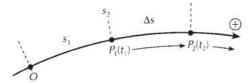
Outro ônibus que percorresse a mesma distância (180 km) em apenas 2 h teria a velocidade escalar média de:

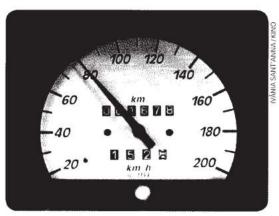
$$v'_{\rm m} = \frac{180 \, \rm km}{2 \, \rm h} = 90 \, \rm km/h$$

e seria mais rápido que o anterior, nesse percurso.

A qualquer movimento associamos a grandeza chamada velocidade escalar para medir a variação do espaço do móvel no decorrer do tempo. Iniciaremos, portanto, nosso estudo analisando a velocidade escalar média.

Considere um ponto material P descrevendo uma certa trajetória em relação a um determinado referencial. No instante t_1 seu espaço é s_1 e no instante posterior t_2 seu espaço é s_2 (figura 10). No intervalo de tempo $\Delta t = t_2 - t_1$ a variação do espaço do ponto material é $\Delta s = s_2 - s_1$. A velocidade escalar média v_m no intervalo de tempo Δt é expressa pela relação:




Figura 10.

$$v_{\mathsf{m}} = \frac{\Delta \mathsf{s}}{\Delta t} = \frac{\mathsf{s}_2 - \mathsf{s}_1}{t_2 - t_1}$$

Note, na definição de velocidade escalar média, que Δt é sempre positivo, pois é a diferença entre o instante posterior t_2 e o instante anterior t_1 . Já a variação do espaço $\Delta s = s_2 - s_1$ pode ser positiva, se $s_2 > s_1$; negativa, se $s_2 < s_1$; e eventualmente nula, quando o móvel retorna à sua posição inicial ($s_2 = s_1$). O sinal de Δs determina o sinal da velocidade escalar média.

No exemplo inicialmente citado neste item, o ônibus percorreu 180 km em 3 h e sua velocidade escalar média, nesse intervalo, foi de 60 km/h. O velocímetro do ônibus não marcará sempre 60 km/h, pois durante uma viagem a velocidade aumenta, diminui, e o ônibus eventualmente pára. O velocímetro nos fornece o valor absoluto da velocidade escalar do ônibus em cada instante. A velocidade escalar em cada instante é denominada velocidade escalar instantânea.

A velocidade escalar instantânea v pode ser entendida como uma velocidade escalar média $V_{\rm m}=\frac{\Delta s}{\Delta t}$, considerando-se o intervalo de tempo Δt extremamente pequeno, isto é, Δt tendendo a zero ($\Delta t \rightarrow 0$), o que implica que t_2 tende a t_1 ($t_2 \rightarrow t_1$). Nesse caso, o quociente $\frac{\Delta s}{\Delta t}$ assume um determinado valor limite. Daí a definição:

No instante da foto, a velocidade escalar instantânea do veículo era 80 km/h.

A **velocidade escalar instantânea** v é o valor limite a que tende a velocidade escalar média $\frac{\Delta s}{\Delta t}$, quando Δt tende a zero. Representa-se por:

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

A notação **lim** da expressão anterior deve ser lida **limite de**, e representa uma operação de cálculo que só será estudada no final do ensino médio ou em cursos superiores.

No caso em que a velocidade escalar instantânea é a mesma em todos os instantes, ela coincide com a velocidade escalar média em qualquer intervalo de tempo.

A unidade de velocidade escalar (média ou instantânea) é expressa em unidade de comprimento por unidade de tempo: km/h (quilômetros por hora), m/s (metros por segundo), mi/h (milhas por hora), cm/s (centímetros por segundo) etc.

No decorrer deste livro encontraremos problemas em que será necessário converter velocidades expressas em km/h para m/s e vice-versa.

Sabernos que:
$$\begin{cases} 1 \text{ km} = 1.000 \text{ m} \\ 1 \text{ h} = 60 \text{ min e 1 min} = 60 \text{ s} & \text{Então: } \left\{ 1 \frac{\text{km}}{\text{h}} = \frac{1.000 \text{ m}}{3.600 \text{ s}} = \frac{1 \text{ m}}{3,6 \text{ s}} \right. \\ 1 \text{ h} = 60 \cdot 60 \text{ s} = 3.600 \text{ s} \end{cases}$$

Portanto: 1
$$\frac{km}{h} = \frac{1}{3,6} \frac{m}{s} e 1 m/s = 3,6 km/h$$

Sendo assim, para converter km/h em m/s divide-se o valor da velocidade por 3,6; para converter m/s em km/h, multiplica-se o valor da velocidade por 3,6:

$$\begin{cases} \frac{km}{h} & \xrightarrow{: 3,6} & \frac{m}{s} \end{cases}$$

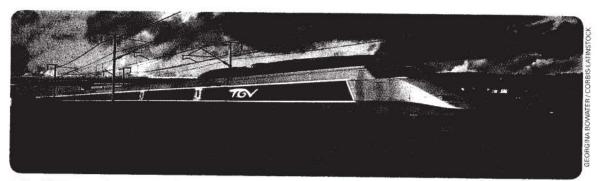
Assim, por exemplo, um atleta que corre 100 m em 10 s terá uma velocidade escalar média:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} = \frac{100 \,\mathrm{m}}{10 \,\mathrm{s}} \Rightarrow v_{\rm m} = 10 \,\mathrm{m/s}$$

Essa velocidade, expressa em quilômetros por hora, vale:

$$v_{\rm m} = 10 \cdot 3.6 \, \frac{\rm km}{\rm h} \implies v_{\rm m} = 36 \, \rm km/h$$

Portanto, uma velocidade baixa para um automóvel (36 km/h) representa para o homem uma velocidade extremamente alta, que somente atletas olímpicos conseguem alcancar.


Por outro lado, um carro que desenvolve numa estrada a velocidade de 108 km/h fará, em metros por segundo:

$$v = 108 \text{ km/h} = \frac{108}{3.6} \text{ m/s} \implies v = 30 \text{ m/s}$$

Comparando velocidades

- A velocidade média de uma pessoa em passo normal é de aproximadamente 1,5 m/s, o que equivale a 5,4 km/h. Os atletas olímpicos nas provas de 100 m rasos desenvolvem velocidades médias de 10 m/s, ou seja, 36 km/h.
- A lesma desloca-se com velocidade média de 1,5 mm/s, o bicho-preguiça com velocidade de 2 m/min no solo, enquanto o guepardo, um dos animais mais velozes, atinge velocidades superiores a 100 km/h.
- O avestruz é a ave terrestre mais rápida, podendo atingir a velocidade de 72 km/h.
- Na França, o trem de grande velocidade (TGV) faz o trajeto de 430 km, entre Paris e Lyon, em 1 h 55 min, desenvolvendo uma velocidade média de 224 km/h.

▲ Um TGV cruzando um campo de girassóis na França.

- A velocidade do som no ar é de 340 m/s ou 1.224 km/h. Os aviões supersônicos superam 2.000 km/h em vôos comerciais.
- Os aviões do projeto X-15, criado pela NASA nos anos 1970 para treinamento de astronautas, chegavam a alcançar a fantástica velocidade de 7.358 km/h.

▲ Avião supersônico do projeto X-15.

- A velocidade de translação da Terra, em torno do Sol, é de 30 km/s ou 108.000 km/h.
- Devido à rotação da Terra, um ponto do equador tem velocidade de aproximadamente 1.700 km/h.
- A velocidade da luz no vácuo é de 300.000 km/s ou 1,08 bilhão de km/h.

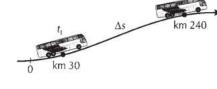
Exercícios resolvidos

Um ônibus passa pelo km 30 de uma rodovia às 6 h, e às 9 h 30 min passa pelo km 240. Qual é a velocidade escalar média desenvolvida pelo ônibus nesse intervalo de tempo?

Solução:

No instante $t_1 = 6$ h o espaço do ônibus é $s_1 = 30$ km e no instante $t_2 = 9$ h 30 min seu espaço é $s_2 = 240$ km. A variação de espaço é igual a:

$$\Delta s = s_2 - s_1$$
$$\Delta s = 240 - 30$$
$$\Delta s = 210 \text{ km}$$


O intervalo de tempo correspondente vale:

$$\Delta t = t_2 - t_1$$

$$\Delta t = 9 \text{ h } 30 \text{ min } - 6 \text{ h}$$

$$\Delta t = 3 \text{ h } 30 \text{ min}$$

$$\Delta t = 3.5 \text{ h}$$

Assim, a velocidade escalar média será:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} \Rightarrow v_{\rm m} = \frac{210}{3.5} \Rightarrow v_{\rm m} = 60 \text{ km/h}$$

Resposta: 60 km/h

Um carro de passeio percorre 30 km em 20 min. Determine sua velocidade escalar média nesse percurso.

Solução:

A variação do espaço do carro foi $\Delta s = 30$ km e o intervalo de tempo foi $\Delta t = 20$ min $= 20 \cdot \frac{1}{60}$ h $= \frac{1}{2}$ h.

Assim, a velocidade escalar média será:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} \Rightarrow v_{\rm m} = \frac{30}{\frac{1}{3}} \Rightarrow \boxed{v_{\rm m} = 90 \text{ km/h}}$$

Resposta: 90 km/h

No exercício anterior, qual teria sido a velocidade escalar média do carro se, durante o percurso, tivesse parado 10 min para o abastecimento de combustível?

Solução:

A variação do espaço continua sendo $\Delta s = 30$ km, mas o intervalo de tempo aumenta, pois temos de acrescentar a permanência no posto de abastecimento (10 min):

$$\Delta t = 20 + 10 \Rightarrow \Delta t = 30 \text{ min } \Rightarrow \Delta t = 30 \cdot \frac{1}{60} \text{ h} \Rightarrow \Delta t = \frac{1}{2} \text{ h}$$

A velocidade escalar média será então:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} \Rightarrow v_{\rm m} = \frac{30}{\frac{1}{2}} \Rightarrow \boxed{v_{\rm m} = 60 \text{ km/h}}$$

Resposta: 60 km/h

Um ônibus percorre a distância de 480 km, entre Santos e Curitiba, com velocidade escalar média de 60 km/h. De Curitiba a Florianópolis, distantes 300 km, o ônibus desenvolve a velocidade escalar média de 75 km/h. Qual é a velocidade escalar média do ônibus no percurso de Santos a Florianópolis?

Solução:

Devemos calcular os intervalos de tempo que o ônibus gasta para percorrer cada um dos trechos:

Santos-Curitiba:

$$v_1 = \frac{\Delta s_1}{\Delta t_1} \Rightarrow \Delta t_1 = \frac{\Delta s_1}{v_1} = \frac{480}{60} \Rightarrow \Delta t_1 = 8 \text{ h}$$

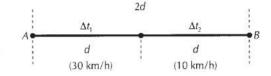
Curitiba-Florianópolis:

$$v_2 = \frac{\Delta s_2}{\Delta t_2} \Rightarrow \Delta t_2 = \frac{\Delta s_2}{v_2} = \frac{300}{75} \Rightarrow \Delta t_2 = 4 \text{ h}$$

$$\Delta t = \Delta t_1 + \Delta t_2 = 8 + 4 \implies \Delta t = 12 \text{ h}$$

Assim, a velocidade escalar média do ônibus no percurso de Santos a Florianópolis vale:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} \Rightarrow v_{\rm m} = \frac{780}{12} \Rightarrow \boxed{v_{\rm m} = 65 \text{ km/h}}$$


Resposta: 65 km/h

A velocidade escalar média de um móvel durante a metade de um percurso é 30 km/h e esse mesmo móvel tem a velocidade escalar média de 10 km/h na metade restante desse mesmo percurso. Determine a velocidade escalar média do móvel no percurso total.

Solução:

Chamemos 2d a distância total do percurso e d a metade do percurso. Seja Δt_1 o intervalo de tempo gasto pelo móvel na primeira metade e Δt_2 o intervalo na segunda metade. Na primeira metade a velocidade escalar média é 30 km/h:

$$30 = \frac{d}{\Delta t_1} \Rightarrow \Delta t_1 = \frac{d}{30}$$

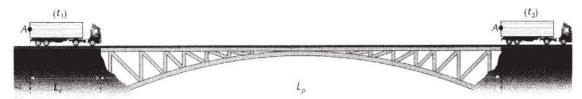
Na segunda metade a velocidade escalar média é 10 km/h:

$$10 = \frac{d}{\Delta t_2} \Rightarrow \Delta t_2 = \frac{d}{10}$$

O intervalo de tempo total gasto no percurso \overline{AB} (AB = 2d) é:

$$\Delta t = \Delta t_1 + \Delta t_2 \implies \Delta t = \frac{d}{30} + \frac{d}{10} \implies \Delta t = \frac{4d}{30}$$

A velocidade escalar média procurada é:


$$v_{\rm m} = \frac{\Delta s}{\Delta t} \Rightarrow v_{\rm m} = \frac{2d}{\frac{4d}{30}} \Rightarrow \boxed{v_{\rm m} = 15 \text{ km/h}}$$

Resposta: A velocidade escalar média no percurso \overline{AB} é 15 km/h; observe que não é a média aritmética das velocidades escalares médias em cada trecho do percurso.

Uma carreta de 20 m de comprimento demora 10 s para atravessar uma ponte de 180 m de extensão. Determine a velocidade escalar média da carreta no percurso.

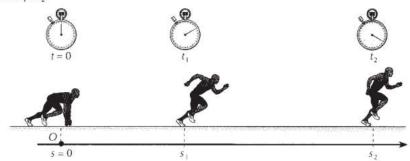
Solução:

A figura mostra a posição de uma carreta em dois instantes distintos: t_1 , quando inicia a travessia da ponte, e t_2 , quando termina essa travessia. Observe que no intervalo de tempo $\Delta t = t_2 - t_1$ qualquer ponto da carreta (destacamos o ponto A na traseira) percorre a distância $\Delta s = L_c + L_p$, sendo que $L_c = 20$ m é o comprimento da carreta e $L_p = 180$ m é o comprimento da ponte.

Assim, a carreta percorre $\Delta s = 20 \text{ m} + 180 \text{ m} = 200 \text{ m}$ no intervalo de tempo $\Delta t = 10 \text{ s}$. Portanto, sua velocidade escalar média no percurso vale:

$$v_{\rm m} = \frac{\Delta s}{\Delta t} = \frac{200}{10} \implies v_{\rm m} = 20 \text{ m/s}$$

Em quilômetros por hora:


$$v_{\rm m} = 20 \cdot 3.6 \Rightarrow v_{\rm m} = 72 \,\mathrm{km/h}$$

.....

Resposta: 20 m/s ou 72 km/h

Exercícios propostos

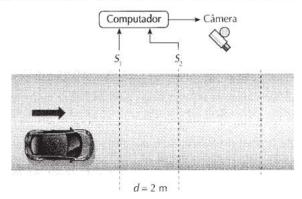
- P.17 Um móvel percorre uma distância de 1.200 m em 4 min. Qual é sua velocidade escalar média?
- P.18 (Olimpíada Paulista de Física) A velocidade de crescimento dos fios de cabelo de uma pessoa é de aproximadamente 1,5 cm/mês. Suponha que Júlio, que tem 1,8 m de altura, deseja ter os cabelos bem compridos, de forma que eles cheguem a encostar no chão quando ele estiver em pé. Calcule quantos anos, no mínimo, Júlio tem que ficar sem cortar os cabelos, até ele conseguir o seu objetivo.
- Na rodovia dos Bandeirantes, os limites de velocidade para os automóveis e VELOCIDADE MÁXIMA caminhões são, respectivamente, 120 km/h e 90 km/h. a) Se um automóvel e um caminhão mantiverem durante 1 minuto a respectiva velocidade limite, quantos quilômetros cada um percorrerá nesse intervalo de tempo? b) Imagine que um automóvel e um caminhão saiam de São Paulo no mesmo instante em direção a Campinas (distante 90 km). Se eles desenvolverem durante todo o trajeto, respectivamente, as velocidades médias de 100 km/h e 60 km/h, quantos ÔNIBUS minutos o automóvel chegará a Campinas **AMINHÕES** antes do caminhão?
- **P.20** Um atleta passa no instante $t_1 = 10$ s por uma posição cujo espaço é $s_1 = 50$ m e no instante $t_2 = 20$ s pela posição de espaço $s_2 = 120$ m, conforme a figura abaixo. Determine a velocidade escalar média do atleta no intervalo de t_1 a t_2 .

- P.21 Um carro viaja de Atibaia (SP) a Cambuí (MG), que dista 90 km, parando durante 30 min num posto à beira da estrada, para refeição e abastecimento. De Atibaia até o posto gasta 1 h 30 min, fazendo o percurso do posto a Cambuí em mais 30 min. Calcule a velocidade escalar média do carro nessa viagem.
- P.22 (Vunesp) Sentado em um ponto de ônibus, um estudante observa os carros percorrerem um quarteirão (100 m). Usando o seu relógio de pulso, ele marca o tempo gasto por 10 veículos para percorrerem essa distância. Suas anotações mostram:

Veículo	1º	2°	3º	4º	5º	6°	7º	8⁰	9º	10º
Tempo (s)	12	5	16	20	9	10	4	15	8	13

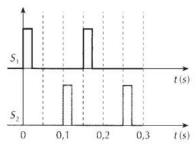
Com os dados colhidos, determine:

- a) os valores da maior e da menor velocidade média;
- b) quais veículos tiveram velocidade média acima da velocidade máxima permitida de 60 km/h.
- **P.23** (Ufac) Um carro com uma velocidade de 80 km/h passa pelo km 240 de uma rodovia às 7 h 30 min. A que horas este carro chegará à próxima cidade, sabendo-se que ela está situada no km 300 dessa rodovia?
- P.24 (PUC-Campinas-SP) Numa corrida de carros, suponha que o vencedor gastou 1 h 30 min para completar o circuito, desenvolvendo uma velocidade média de 240 km/h, enquanto um outro carro, o segundo colocado, desenvolveu a velocidade média de 236 km/h. Se a pista tem 30 km, quantas voltas o carro vencedor chegou à frente do segundo colocado?


.....

- P.25 (UFRJ) Um estudante a caminho da UFRJ trafega 8,0 km na Linha Vermelha a 80 km/h (10 km/h a menos que o limite permitido nessa via). Se ele fosse insensato e trafegasse a 100 km/h, calcule quantos minutos economizaria nesse mesmo percurso.
- P.26 (UFPE) Quatro cidades A, B, C e D estão dispostas de tal modo que as distâncias rodoviárias entre A e B, B e C, e C e D são, respectivamente, AB = 60 km, BC = 100 km e CD = 90 km. Se um automóvel vai de A até B a uma velocidade de 60 km/h, da cidade B até a C a uma velocidade média de 50 km/h e da C até a D a uma velocidade média de 45 km/h, determine a velocidade média desse automóvel em km/h, para o percurso de A até D.
- P.27 Um percurso de 310 km deve ser feito por um ônibus em 5 h. O primeiro trecho de 100 km é percorrido com velocidade média de 50 km/h, e o segundo trecho de 90 km, com velocidade média de 60 km/h. Que velocidade média deve ter o ônibus no trecho restante para que a viagem se efetue no tempo previsto?
- P.28 A velocidade escalar média de um automóvel até a metade de seu percurso é 90 km/h e na metade restante é 60 km/h. Determine a velocidade escalar média no percurso total. Ela é a média aritmética das velocidades escalares médias em cada trecho do percurso?
- P.29 A velocidade escalar média de um automóvel é 80 km/h no primeiro trecho de seu percurso e 60 km/h no trecho restante. Os trechos são percorridos no mesmo intervalo de tempo. Qual é a velocidade escalar média durante todo o percurso? Ela é a média aritmética das velocidades escalares médias em cada trecho do percurso?
- **P.30** Um trem de comprimento 200 m gasta 20 s para atravessar um túnel de comprimento 400 m. Determine a velocidade escalar média do trem.
- P.31 (Fuvest-SP) Uma composição ferroviária (19 vagões e uma locomotiva) desloca-se a 20 m/s. Sendo o comprimento de cada elemento da composição 10 m, qual é o tempo que o trem gasta para ultrapassar:
 - a) um sinaleiro?

b) uma ponte de 100 m de comprimento?



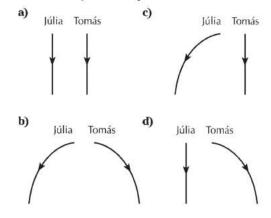
- P.32 (UFPE) Um caminhão se desloca com velocidade escalar constante de 144 km/h. Suponha que o motorista cochile durante 1,0 s. Qual a distância, em metros, percorrida pelo caminhão nesse intervalo de tempo se ele não colidir com algum obstáculo?
- **P.33** (Fuvest-SP) Um avião vai de São Paulo a Recife em 1 h 40 min. A distância entre essas cidades é aproximadamente 3.000 km. (Dado: velocidade do som no ar = 340 m/s)
 - a) Qual a velocidade média do avião?
- b) O avião é supersônico?
- P.34 (Olimpíada Brasileira de Física) Um avião parte de uma cidade A para outra cidade B, mantendo a velocidade constante igual a 250 km/h. Ao alcançar metade do caminho é forçado a diminuir a velocidade, mantendo-a constante em 200 km/h; conseqüentemente, chega ao destino com 15 minutos de atraso.
 Considerando que o tempo de mudança de velocidade é desprezível, qual a distância entre as cidades A e B?
- P.35 (Unicamp-SP) A figura abaixo mostra o esquema simplificado de um dispositivo colocado em uma rua para controle de velocidade de automóveis (dispositivo popularmente chamado de "radar").

Os sensores S_1 e S_2 e a câmera estão ligados a um computador. Os sensores enviam um sinal ao computador sempre que são pressionados pelas rodas de um veículo. Se a velocidade do veículo está acima da permitida, o computador envia um sinal para que a câmera fotografe sua placa traseira no momento em que esta estiver sobre a linha tracejada. Para um certo veículo, os sinais dos sensores foram os seguintes:

- a) Determine a velocidade do veículo em km/h.
- b) Calcule a distância entre os eixos do veículo.
- P.36 (Fuvest-SP) Diante de uma agência do INSS há uma fila de aproximadamente 100 m de comprimento, ao longo da qual se distribuem de maneira uniforme 200 pessoas. Aberta a porta, as pessoas entram, durante 30 s, com uma velocidade média de 1 m/s. Avalie:
 - a) o número de pessoas que entraram na agência;
 - b) o comprimento da fila que restou do lado de fora.
- P.37 (Unicamp-SP) Brasileiro sofre! Numa tarde de sexta-feira, a fila única de clientes de um banco tem comprimento médio de 50 m. Em média, a distância entre as pessoas na fila é de 1,0 m. Os clientes são atendidos por três caixas. Cada caixa leva cerca de 3,0 min para atender um cliente. Pergunta-se:

.....

- a) Qual a velocidade (média) dos clientes ao longo da fila?
- b) Quanto tempo um cliente gasta na fila?
- c) Se um dos caixas se retirar por 30 min, quantos metros a fila aumenta?



T.17 (UEPB) Um professor de Física, verificando em sala de aula que todos os seus alunos encontram-se sentados, passou a fazer algumas afirmações para que eles refletissem e recordassem alguns conceitos sobre movimento.

> Das afirmações seguintes formuladas pelo professor, a única correta é:

- a) Pedro (aluno da sala) está em repouso em relação aos demais colegas, mas todos nós estamos em movimento em relação à Terra.
- b) Mesmo para mim (professor), que não paro de andar, seria possível achar um referencial em relação ao qual eu estivesse em repouso.
- c) A velocidade dos alunos que eu consigo observar agora, sentados em seus lugares, é nula para qualquer observador humano.
- d) Como não há repouso absoluto, nenhum de nós está em repouso, em relação a nenhum referencial.
- e) O Sol está em repouso em relação a qualquer referencial.

T.18 (UFMG) Júlia está andando de bicicleta, em um plano horizontal, com velocidade constante, quando deixa cair uma moeda. Tomás está parado na rua e vê a moeda cair. Considere desprezível a resistência do ar. Assinale a alternativa em que melhor estão representadas as trajetórias da moeda, como observadas por Júlia e por Tomás.

(UEM-PR) Um trem se move com velocidade horizontal constante. Dentro dele estão o observador A e um garoto, ambos parados em relação ao trem. Na estação, sobre a plataforma, está o observador B, parado em relação a ela. Quando o trem passa pela plataforma, o garoto joga uma bola verticalmente para cima.

- 01) o observador A vê a bola se mover verticalmente para cima e cair nas mãos do garoto.
- 02) o observador B vê a bola descrever uma parábola e cair nas mãos do garoto.
- 04) os dois observadores vêem a bola se mover numa mesma trajetória.
- 08) o observador B vê a bola se mover verticalmente para cima e cair atrás do garoto.
- 16) o observador A vê a bola descrever uma parábola e cair atrás do garoto.

Dê como resposta a soma dos números associados às proposições corretas.

- (Vunesp) Ao passar pelo marco "km 200" de uma rodovia, um motorista vê um anúncio com a inscrição: "ABASTECIMENTO E RESTAURANTE A 30 MINUTOS". Considerando que esse posto de serviços se encontra junto ao marco "km 245" dessa rodovia, pode-se concluir que o anunciante prevê, para os carros que trafegam nesse trecho, uma velocidade média, em km/h, de:
 - a) 80
- **b)** 90
- c) 100
- **d)** 110
- T.21 (UFRN) Uma das teorias para explicar o aparecimento do homem no continente americano propõe que ele, vindo da Ásia, entrou na América pelo estreito de Bering e foi migrando para o sul até atingir a Patagônia, como indicado no mapa abaixo.

Datações arqueológicas sugerem que foram necessários cerca de 10.000 anos para que essa migração se realizasse.

O comprimento AB, mostrado ao lado do mapa, corresponde à distância de 5.000 km nesse mes-

Com base nesses dados, pode-se estimar que a velocidade escalar média de ocupação do continente americano pelo homem, ao longo da rota desenhada, foi de aproximadamente:

- a) 0.5 km/ano
- c) 24 km/ano
- b) 8,0 km/ano
- d) 2,0 km/ano
- (UEL-PR) Um automóvel mantém uma velocidade escalar constante de 72,0 km/h. Em 1 h 10 min ele percorre, em quilômetros, uma distância de:
 - **a)** 79,2 **b)** 80,0 **c)** 82,4 **d)** 84,0 **e)** 90,0

- T.23 (Uerj) A velocidade normal com que uma fita de vídeo passa pela cabeça de um gravador é de. aproximadamente, 33 mm/s. Assim, o comprimento de uma fita de 120 minutos de duração corresponde a cerca de:
 - a) 40 m
- **b)** 80 m
- c) 120 m
- **d)** 240 m

e) 50

- T.24 (UFMA) A pista do "Castelinho" possui 400 m de comprimento. Se um atleta corre, com uma velocidade escalar constante de 10,0 m/s, quantas voltas ele completará em 20 minutos?
 - a) 10
- **b)** 20
- c) 30
- **d)** 40
- (Ufes) Uma pessoa caminha 1,5 passo/segundo, com passos que medem 70 cm cada um. Ela deseja atravessar uma avenida com 21 metros de largura. O tempo mínimo que o sinal de trânsito de pedestres deve ficar aberto para que essa pessoa atravesse a avenida com segurança é:
 - a) 10 s
- c) 20 s
- e) 45 s

- **b)** 14 s
- d) 32 s
- (Mackenzie-SP) Um automóvel que trafega ao T.26 longo de uma rodovia passa pelo marco de estrada 115 km às 19 h 15 min e pelo marco 263,5 km às 20 h 54 min. A velocidade escalar média desse automóvel, nesse intervalo de tempo, é:
 - a) 148,5 m/s
- c) 29,7 m/s
- e) 90,0 m/s
- **b)** 106,8 m/s
- d) 25,0 m/s
- (Olimpíada Paulista de Física) Beatriz parte de casa para a escola com uma velocidade escalar constante de 4,0 km/h. Sabendo-se que Beatriz e Helena moram a mesma distância da escola e que Helena saiu de casa quando Beatriz já havia percorrido dois terços do caminho, qual deve ser a velocidade escalar média de Helena para que possa chegar à escola no mesmo instante em que Beatriz?
 - a) 1,3 km/h
- c) 4,0 km/h
- e) 12,0 km/h
- **b)** 2,0 km/h
- d) 6,0 km/h
- T.28 (Fatec-SP) O motorista de um automóvel deseja percorrer 40 km com velocidade média de 80 km/h. Nos primeiros 15 minutos, ele manteve a velocidade média de 40 km/h. Para cumprir seu objetivo, ele deve fazer o restante do percurso com velocidade média, em km/h, de:
 - **a)** 160

 - **b)** 150 **c)** 120 **d)** 100
- T.29 (UnB-DF) Um fazendeiro percorre, com seu jipe, os limites de sua fazenda, que tem o formato de um losango, com os lados aproximadamente iguais. Devido às peculiaridades do terreno, cada lado foi percorrido com uma velocidade média diferente: o primeiro a 20 km/h, o segundo a 30 km/h, o terceiro a 40 km/h e, finalmente, o último a 60 km/h.

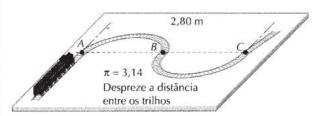
A velocidade média desenvolvida pelo fazendeiro para percorrer todo o perímetro da fazenda, em km/h, foi de:

- a) 50
- **b)** 42
- c) 38
- **d)** 36
- e) 32

- T.30 (Fuvest-SP) Um automóvel e um ônibus trafegam em uma estrada plana, mantendo velocidades constantes em torno de 100 km/h e 75 km/h, respectivamente. Os dois veículos passam lado a lado em um posto de pedágio. Quarenta minutos
 - depois, nessa mesma estrada, o

morista do ônibus vê o automóvel ultrapassá-lo. Ele supõe, então, que o automóvel deve ter realizado, nesse período, uma parada com duração aproximada de:

- a) 4 minutos
- c) 10 minutos e) 25 minutos
- b) 7 minutos d) 15 minutos
- T.31 (UFPA) Certa pessoa viajava em um automóvel cujo velocímetro não funcionava. Desejando saber qual era a velocidade escalar média do automóvel e sabendo que os postes da rede elétrica dispostos à margem da estrada distam 60 m um do outro, a pessoa começou a marcar o tempo no instante em que passou em frente de um certo poste (chamemos de 1º poste), e constatou que transcorreram 45,6 s até o instante em que passou diante do 20º poste. Assim constatou que, no intervalo de tempo durante o qual ele se deslocou do 1º ao 20º poste, a velocidade escalar média do automóvel era, em km/h, de:
 - a) 25


Reprodução proibida. Art. 184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1

b) 69

- c) 90
- e) 98
- T.32 (UEL-PR) Popularmente conhecido como "lombada eletrônica", o redutor eletrônico de velocidade é um sistema de controle de fluxo de tráfego que reúne equipamentos de captação e processamento de dados. Dois sensores são instalados na pista no sentido do fluxo, a uma distância de 4 m um do outro. Ao cruzar cada um deles, o veículo é detectado; um microprocessador recebe dois sinais elétricos consecutivos e, a partir do intervalo de tempo entre eles, calcula a velocidade média do veículo com alta precisão. Considerando que o limite máximo de velocidade permitida para o veículo é de 40 km/h, qual é o menor intervalo de tempo que o veículo deve levar para percorrer a distância entre os dois sensores, permanecendo na velocidade permitida?
 - a) 0,066... s
- c) 0.36 s
- e) 900 s

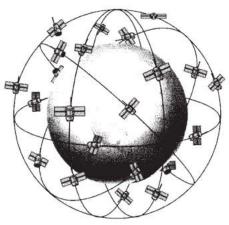
- **b)** 0,10 h
- d) 11,11 s
- T.33 (UFSCar-SP) Três amigos, Antônio, Bernardo e Carlos, saíram de suas casas para se encontrarem numa lanchonete. Antônio realizou metade do percurso com velocidade média de 4 km/h e a outra metade com velocidade média de 6 km/h. Bernardo percorreu o trajeto com velocidade média de 4 km/h durante metade do tempo que levou para chegar à lanchonete e a outra metade do tempo fez com velocidade média de 6 km/h. Carlos fez todo percurso com velocidade média de 5 km/h. Sabendo que os três saíram no mesmo instante de suas casas e percorreram exatamente as mesmas distâncias, pode-se concluir corretamente que:

- a) Bernardo chegou primeiro, Carlos em segundo e Antônio em terceiro.
- b) Carlos chegou primeiro, Antônio em segundo e Bernardo em terceiro.
- c) Antônio chegou primeiro, Bernardo em segundo e Carlos em terceiro.
- d) Bernardo e Carlos chegaram juntos e Antônio chegou em terceiro.
- e) os três chegaram juntos à lanchonete.
- T.34 (Enem-MEC) As cidades de Quito e Cingapura encontram-se próximas à linha do equador e em pontos diametralmente opostos no globo terrestre. Considerando o raio da Terra igual a 6.370 km, pode-se afirmar que um avião saindo de Quito, voando em média 800 km/h, descontando as paradas de escala, chega a Cingapura em aproximadamente:
 - a) 16 horas
- d) 32 horas
- **b)** 20 horas
- e) 36 horas
- c) 25 horas
- (Mackenzie-SP) Um trenzinho, de 60 cm de comprimento, descreve uma trajetória, sobre uma superfície plana e horizontal, da qual se destaca o trecho ABC, ilustrado na figura. O movimento é com velocidade escalar constante, os arcos AB e BC da trajetória são semicircunferências e o intervalo de tempo gasto para que ele atravesse completamente o trecho AC, ao longo dos trilhos, é 2,5 s. A velocidade escalar do trenzinho é aproximadamente:
 - a) 0.9 m/s
- d) 2,2 m/s
- **b)** 1,8 m/s
- e) 3,6 m/s
- c) 2,0 m/s

- T.36 (Uesb-BA) Uma composição ferroviária, de 120 m de comprimento, move-se com velocidade constante de 54 km/h. O tempo que ela gasta para atravessar completamente um pontilhão de 60 m de extensão, em segundos, é:
 - a) 4.0
- **b)** 6,0
- e) 12
- c) 8,0
- T.37 (UFMG) Uma escola de samba, ao se movimentar numa rua reta e muito extensa, mantém um comprimento constante de 2 km. Se ela gasta 90 min para passar completamente por uma arquibancada de 1 km de comprimento, sua velocidade média deve ser:
 - **a)** $\frac{2}{3}$ km/h **c)** $\frac{4}{3}$ km/h
- e) 3 km/h
- **b)** 1 km/h

d) 2 km/h

O sistema espacial é constituído de 24 satélites, em transmissão ininterrupta, sendo monitorados por estações terrestres. Os satélites estão distribuídos em 6 órbitas circulares, cada uma com 4 satélites. Cada satélite completa duas voltas em torno da Terra em um dia, a uma altitude de 20.200 km.


Cada satélite envia ao receptor uma mensagem digital informando sua posição e o instante em que o sinal é emitido. O receptor possui um relógio sincronizado com o relógio atômico do satélite, o que permite determinar o intervalo de tempo entre a emissão e a recepção do sinal. Multiplicando-se esse intervalo de tempo pela velocidade do sinal (aproximadamente 300.000 km/s), tem-se a distância entre o receptor e cada satélite.

Conhecendo-se pelo menos as distâncias a três satélites é possível determinar a posição do receptor, por meio de um processo denominado **triangulação**, como descrevemos abaixo.

Seja R_1 a distância do receptor ao primeiro satélite. O receptor pode estar em qualquer ponto da circunferência de centro no primeiro satélite e raio R_1 (figura a). Indiquemos por R_2 a distância do receptor ao segundo satélite e considere a circunferência de raio R_2 e centro no segundo satélite. O receptor pode estar num dos dois pontos em que as circunferências se interceptam (figura b). Seja R_3 a distância do receptor ao terceiro satélite e considere a circunferência de raio R_3 e centro no terceiro satélite. A intersecção das três circunferências ocorre num ponto onde se localiza exatamente o receptor (figura c).

▲ Receptor GPS

▲ Constelação de satélites

Teste sua leitura

- L.1 (UEM-PR) O GPS (Global Positioning System Sistema de Posicionamento Global) consiste no mais moderno método de localização geográfica. Através de uma rede de satélites em órbita da Terra, é possível saber, por esse sistema:
 - a) latitude e aberração estelar.
 - b) declinação magnética e refração atmosférica.
 - c) longitude e latitude.
 - d) paralaxe e declinação magnética.
 - e) aberração estelar e refração atmosférica.

Reprodução proibida. Art. 184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998.

Figura a

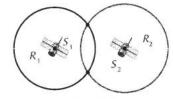
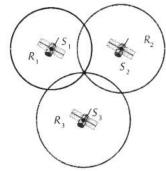
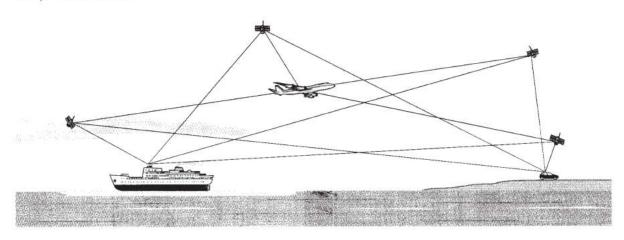


Figura b




Figura c

Automaticamente o receptor fornece as coordenadas (latitude e longitude) deste ponto.

Conhecendo-se as coordenadas de outro ponto pode-se, por meio do receptor GPS, traçar a rota que vai de um ponto ao outro. Daí a utilização do receptor GPS por veículos que transitam por ruas de cidades desconhecidas. O GPS tem aplicações na navegação marítima, na aviação e na cartografia.

Na agricultura, por meio de mapeamento, o GPS permite aumentar a produtividade de áreas cultivadas. Localiza incêndios e o deslocamento de queimadas. Os receptores GPS são utilizados nas práticas esportivas por ciclistas, balonistas, alpinistas etc.

O processo de triangulação foi apresentado de modo simplificado, isto é, em duas dimensões. Considerando o posicionamento no espaço, ou seja, em três dimensões, a localização do receptor é feita por meio da intersecção de três superfícies esféricas, em vez de circunferências. Receptores procuram geralmente por 4 ou mais satélites melhorando, desse modo, a exatidão e determinando precisamente a altitude em que o receptor se encontra.

- L.2 (Unifei-MG) O monitoramento por satélites e o GPS (Sistema de Posicionamento Global) são inovações tecnológicas atualmente usadas por órgãos governamentais, agricultura, empresas etc. Sobre essa questão, escreva verdadeiro (V) ou falso (F) para os itens abaixo e assinale a alternativa correta:
 - O GPS é um Sistema de Posicionamento Global constituído por 24 satélites que emitem sinais de rádio captados por aparelhos especiais em qualquer ponto da superfície terrestre.
 - O GPS indica ao usuário sua localização em termos de latitude, longitude e altitude.
 - · Na agricultura, essas tecnologias podem ser utilizadas a fim de que se obtenha maior produtividade com custos menores.
 - Essas inovações tecnológicas permitem, por exemplo, detectar e acompanhar a direção e o deslocamento de queimadas e avaliar prejuízos em áreas atingidas por secas ou inundações.
 - a) VFVV
- b) VVVF
- c) FVVV
- d) VVVV