Arbitrary Cash-Flow Valuation

An Arbitrary Cash-Flow (ACF) security interface values future known cash-flows. These cashflows must be in a single (potentially foreign) currency. The present value of these cash-flows is determined by prevailing market interest and foreign exchange rates.

Suppose $C_{1}, C_{2}, \ldots, C_{N}$ denote known future cash-flows, which occur at the known times $T_{1}, T_{2}, \ldots, T_{N}$. If $D f_{T}$ denotes the risk-free discount factor to time T for the cash-flow currency, then GET applies the following valuation formula to obtain the present value (PV) of the above cash-flows

$$
\begin{equation*}
\left[\sum_{i} D f_{T_{i}} \times C_{i}\right] \times \text { Spot } F X \tag{1}
\end{equation*}
$$

Here, Spot FX is the spot market foreign exchange (FX) rate from the cash-flow currency into the domestic currency.

$$
\exp \left[-\int_{0}^{t} f(s) d s\right]=D f_{t}
$$

If $t_{1}, t_{2}, \ldots, t_{m}$ denote Imagine interest rate maturity dates for the simply compounded rates $R_{1}, R_{2}, \ldots, R_{m}$, then our benchmark assumed piece-wise constant continuously compounded instantaneous forward rates $f(t)$ given by. In addition, the following is satisfied for all $t \geq 0$,

$$
\begin{gathered}
\exp \left[-\int_{0}^{t} f(s) d s\right]=\exp \left[-\left(\sum_{i=1}^{k-1} f_{t_{i}}\left(t_{i+1}-t_{i}\right)+f_{k}\left(t-t_{k}\right)\right)\right]= \\
\exp \left[-\left(\sum_{i=1}^{k-1} f_{t_{i}}\left(t_{i+1}-t_{i}\right)\right)\right] \times \exp \left[-f_{k}\left(t-t_{k}\right)\right]= \\
\frac{D f_{t_{1}}}{1} \frac{D f_{t_{2}}}{D f_{t_{1}}} \cdots \frac{D f_{t_{k-1}}}{D f_{t_{k-2}}} \frac{D f_{t_{k}}}{D f_{t_{k-1}}} \times \exp \left[-f_{k}\left(t-t_{k}\right)\right]= \\
D f_{t_{k}} \times \exp \left[\frac{t-t_{k}}{t_{k+1}-t_{k}} \ln \left[\frac{D f_{t_{k+1}}}{D f_{t_{k}}}\right]\right]= \\
=D f_{t_{k}} \times\left[\frac{D f_{t_{k+1}}}{D f_{t_{k}}}\right]^{\frac{t-t_{k}}{t_{k+1}-t_{k}}} .
\end{gathered}
$$

Moreover, for $t \in\left(t_{k}, t_{k+1}\right]$, we have

We note that, in the above, we equivalently apply log-linear interpolation of discount factors.
In the case, when we considered an Imagine bond par yield curve input, we performed the following calculations:

Suppose $y_{1}, y_{2}, \ldots, y_{m}$ denoted annually compounded par yields, with respect to maturities 1 year, 2 year, \ldots, m year, for bonds $B_{1}, B_{2}, \ldots, B_{m}$. Thus, bond B_{i} has an annual coupon equal to $y_{i \text { year }}$.

We performed a bootstrap to obtain the discount factors $D f_{1 \text { year }}, D f_{2 \text { year }}, \ldots, D f_{m \text { year }}$. In particular,

$$
\begin{aligned}
D f_{1 \text { year }} & =\frac{1}{1+y_{1 \text { year }}}, \\
D f_{i_{\text {year }}} & =\frac{1-\sum_{j=1}^{i-1} y_{j \text { year }} D f_{t_{j \text { year }}}}{1+y_{i \text { year }}}, i>1 .
\end{aligned}
$$

we applied the following recursive formulas

The equations above are derived from the following observation; given a notional of 100

$$
\begin{aligned}
100= & \text { present value bond cashflows }= \\
& \sum_{j=1}^{i-1} 100 y_{j \text { year }} D f_{T_{j} \text { yar }}+100\left(1+y_{i \text { year }}\right) D f_{i \text { year }} .
\end{aligned}
$$

the price of the par yield bond B_{i} is 100 . Thus,

Finally, we assume as above that continuously compounded instantaneous forward rates $f(t)$ satisfy

$$
\begin{gathered}
f(t)=\frac{-1}{t_{i \text { year }+1}-t_{i_{\text {year }}}} \ln \left[\frac{D f_{t_{i \text { year }+1}}}{D f_{t_{i \text { year }}}}\right], t \in\left(t_{i_{\text {year }}}, t_{i \text { year }+1}\right] \\
f(t)=\frac{-1}{t_{1 \text { year }}} \ln \left[D f_{t_{1} \text { year }}\right], t \in\left[0, t_{1_{1 \text { year }}}\right]
\end{gathered}
$$

that is, log-linear interpolation of discount factors.

The implementation requires the following input parameters:

- Future cash-flow amounts,
- Future cash-flow times,
- Cash-flow currency,
- Domestic currency,
- Spot FX rate from the cash-flow to the domestic currency,
- Imagine interest rate curve for the cash-flow currency.

For a rate curve, the user must specify the following:

- a series of interest rates with start and end dates,
- interest rate compounding,
- day count convention.

For a bond yield curve (ref https://finpricing.com/lib/FiZeroBond.html), the user must specify the following:

- a series of bond yields with maturity dates,
- bond yield compounding,
- day count convention,
- coupon frequency,
- coupon amounts (as percentage of notional amount).

For a discount curve, the user must specify a series of discount factors and discount dates.

